
MATH 303 - MEASURES AND INTEGRATION

FINAL EXAM STUDY GUIDE

1. Measure Spaces

Main definitions. σ-algebras, Borel sets, measurable functions, measures

Main theorems. *measurability criteria for extended real-valued functions (Proposition 2.11)*,
*basic properties of measures: monotonicity, countable subadditivity, continuity from below and
above*

2. Integration

Main definitions. simple functions, integrable functions, definition of the integral, null sets, com-
pletion of measure spaces, convergence a.e., convergence in L1

Main theorems. *approximation of measurable functions by simple functions*; basic proper-
ties of the integral: linearity, monotonicity, triangle inequality; monotone convergence theorem;
Fatou’s lemma; dominated convergence theorem; *Borel–Cantelli lemma*; *integration “ignores”
null sets (Propositions 3.20, 3.22, and 3.23)*

3. Lebesgue–Stieltjes Measures

Main definitions. locally finite measure, distribution function, π-system, λ-system, semi-algebra,
algebra, pre-measure, outer measure, measurable set (with respect to an outer measure), Lebesgue–
Stieltjes measure, Lebesgue measure

Main theorems. π-λ theorem, Carathéodory’s theorem, Hahn–Kolmogorov extension theorem,
existence and uniqueness of Lebesgue–Stieltjes measures, existence of a Lebesgue non-measurable
set, regularity properties of Lebesgue–Stieltjes measures

4. Radon Measures

Main definitions. locally compact, Hausdorff, support of a function, Radon measure, positive
linear functional

Main theorems. Urysohn’s lemma, partition of unity, Riesz representation theorem

5. Product Measures

Main definitions. σ-finite measure, s-finite measure, measurable rectangle, product σ-algebra,
product measure, cross-sections of sets and functions, cross-sectional product measure, maximal
product measure

Main theorems. existence of cross-sectional product of s-finite measures, existence of (maximal)
product measure of arbitrary measures, *uniqueness of product of σ-finite measures*, Fubini–Tonelli
theorem

6. Lp Spaces

Main definitions. topological vector space, norm, inner product, (topological) dual space, Banach
space, Lp norm and Lp space, convex sets and functions

1



2 MATH 303 EXAM STUDY GUIDE

Main theorems. dual of a normed space is Banach, Jensen’s inequality, Minkowski’s inequality,
Hölder’s inequality, Riesz–Fischer theorem, Young’s inequality

7. Littlewood’s Principles

Main definitions. second countable topological space, σ-compact set, σ-finite set, regular Borel
measure

Main theorems. inner regularity of Radon measures on σ-finite sets, regularity of locally finite
Borel measures on second countable LCH spaces, Steinhaus’s theorem, Riemann–Lebesgue lemma,
*density of Cc(X) in Lp(µ)*, Lusin’s theorem, Egorov’s theorem

8. Differentiation of Measures

Main definitions. signed and complex measures, null sets, positive sets, negative sets, abso-
lutely continuous, mutually singular, Hahn decomposition, Jordan decomposition, positive vari-
ation, negative variation, total variation, Lebesgue decomposition, Radon–Nikodym derivative,
integral against a signed/complex measure

Main theorems. *continuity properties for signed and complex measures*, Hahn decomposition
theorem, Jordan decomposition theorem, Lebesgue decomposition theorem, Radon–Nikodym theorem,
Riesz–Frechét theorem, Riesz representation theorem for complex measures

Exam Guidelines and Format

• If an item is marked with asterisks (*), I expect that, given a precise mathematical state-
ment, you can produce a proof of the result (using other theorems proved in the course as
needed).

• For the main convergence theorems (monotone convergence, Fatou, and dominated conver-
gence), I do not expect you to be able to prove any of them from scratch without using
the others. However, I may ask you to use one of the convergence theorems to deduce
another. For example, the proofs in the lecture notes of Fatou’s lemma and the dominated
convergence theorem (using monotone convergence and Fatou, respectively) are fair game,
but I won’t ask you to prove any convergence theorems straight from the definition of the
integral.

• If an item is underlined and in italics, I expect that, given the name of the theorem, you can
provide a precise formulation (but not necessarily its proof, unless the item is also marked
with asterisks).

• I expect that you know the definitions of the objects in “main definitions”.
• The final exam will consist of two sections:

– 2 required problems testing your understanding of the main definitions and theorems
– 6 problems on applying the main theorems (similar to exercise/homework questions),

out of which you may choose 4 problems to solve
• You may freely use any of the theorems listed above as well as any other results proved
in lectures, homeworks, or exercises throughout the semester. When using a theorem, you
should cite its name (e.g., “By Lusin’s theorem, ...”) or give a description of an unnamed
theorem (e.g., “As we showed in class, Radon measures are inner regular on sets of finite
measure, so ...”). The (hopefully obvious) exception to this rule is that if I ask you to prove
a specific result, you cannot appeal to the proof of the same result in the lecture notes. (For
example, if I ask you to deduce the dominated convergence theorem from Fatou’s lemma,
a “proof” that reads in full, “We proved the dominated convergence theorem using Fatou’s
lemma in lecture,” will not receive any points.)
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Practice Problems

Understanding main definitions and theorems. 2 required problems of this type will appear
on the exam. Possible additional problems of this kind are to prove one of the results marked with
asterisks.

Problem 1.

(a) State the monotone convergence theorem.
(b) State the dominated convergence theroem.
(c) Use the dominated convergence theorem to give a proof of the monotone convergence theorem.

[Hint: If supn∈N
∫
X |fn| dµ < ∞, then the set {x ∈ X : fn(x) ̸= 0 for some n} is a σ-finite set.

Use this to reduce to the case that the measure space is finite.]

Problem 2. Let (X,B), (Y, C), and (Z,D) be measurable spaces.

(a) Show that (B ⊗ C) ⊗ D = B ⊗ (C ⊗ D) and that this σ-algebra is equal to the σ-algebra on
X×Y ×Z generated by the family of “measurable boxes” {B×C×D : B ∈ B, C ∈ C, D ∈ D}.

(b) Suppose µ : B → [0,∞], ν : C → [0,∞], and ρ : D → [0,∞] are σ-finite measures. Show that
(µ× ν)× ρ = µ× (ν × ρ) and that this measure is the unique measure on B ⊗ C ⊗D assigning
a measure of µ(B)ν(C)ρ(D) to each measurable box B × C ×D.

Problem 3. Let (X,B, µ) be a measure space, and let f ∈ L1(µ). Show that the following are
equivalent:

(i) f = 0 a.e.;
(ii)

∫
X |f | dµ = 0;

(iii)
∫
E f dµ = 0 for every E ∈ B.

Applying the main theorems. 6 problems of this type will appear on the exam, out of which
you may choose which 4 to solve.

Problem 4. Let λ be the Lebesgue measure on R. For ε > 0, let

Aε =

{
x ∈ [0, 1] :

∣∣∣∣x− p

q

∣∣∣∣ < 1

q2+ε
for infinitely many p, q ∈ Z with q ≥ 1

}
.

Show that λ(Aε) = 0 for every ε > 0.

[Note: A theorem of Dirichlet, which can be proved using the pigeonhole principle, says that every

irrational number x can be approximated by rationals in such a way that
∣∣∣x− p

q

∣∣∣ < 1
q2

for infinitely

many p, q ∈ Z with q ≥ 1. This problem shows that the exponent 2 is best possible for almost all
numbers.]

Problem 5. Let a ∈ (0, 1) and ε > 0.

(a) Show that there exists M ∈ N with the following property: if (X,B, µ) is a probability space
and (An)n∈N is a sequence of measurable sets such that infn∈N µ(An) = a, then there exist
1 ≤ n < m ≤ M such that µ(An ∩Am) > a2 − ε.

(b) Prove the following generalization for intersections of more sets. Let k ∈ N. Show that there
exists Mk ∈ N (depending also on a and ε) with the property: if (X,B, µ) is a probability space
and (An)n∈N is a sequence of measurable sets such that infn∈N µ(An) = a, then there exist
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1 ≤ n1 < n2 < · · · < nk ≤ Mk such that

µ

 k⋂
j=1

Anj

 > ak − ε.

Problem 6. Let (X,B, µ) be a measure space and f : X → C a measurable function. Prove
Chebyshev’s inequality: for every c ∈ (0,∞) and p ∈ [1,∞),

µ ({|f | > c}) ≤
(∥f∥p

c

)p

Problem 7. Let E ⊆ R be a Lebesgue-measurable set with λ(E) > 0. Fix a finite set F ⊆ R.
Show that E contains a homothetic copy of F , i.e. a set of the form aF + b = {af + b : f ∈ F}
with a ̸= 0 and b ∈ R.

[Note: There is a deep theorem in additive combinatorics, known as Szemerédi’s theorem, that
provides a strengthening to the conclusion; namely, one can bound the scaling factor a > δ for
some δ depending on the set F and the size of the set E.]

Problem 8. For fixed x ∈ R, let Lx = {(x, y) : y ∈ R} ⊆ R2 be the vertical line over x. Let
π : R2 → R be the projection onto the second coordinate π(x, y) = y. Define

τ = {G ⊆ R2 : π(G ∩ Lx) is open for every x ∈ R}.

(a) Show that τ is a topology on R2 and (R2, τ) is a locally compact Hausdorff space.
(b) Prove that K ⊆ R2 is compact (with respect to τ) if and only if π(K ∩Lx) is compact for every

x ∈ R and K ∩ Lx = ∅ for all but finitely many x.
(c) Define φ : Cc(R2, τ) → C by

φ(f) =
∑
x∈R

∫
R
f(x, y) dy,

where the integral with respect to y is the Riemann integral. Show that φ is a positive linear
functional.

(d) Determine the measure µ representing φ.

Problem 9. For x ∈ [0, 1), consider the binary expansion x =
∑∞

j=1
aj(x)
2j

with aj(x) ∈ {0, 1}. Let
f(x) = min{j ∈ N : aj(x) = 1}.
(a) Show that f is Borel-measurable.
(b) Compute the integral of f with respect to the Lebesgue measure on [0, 1).

[Note: This problem has a probabilistic interpretation. Sampling x ∈ [0, 1) randomly according to
the Lebesgue measure, the sequence a1(x), a2(x), a3(x), . . . is a sequence of independent fair coin
flips (where we interpret 0 as tails and 1 as heads). With this interpretation, the value of

∫
[0,1) f dλ

is the expected number of flips required until we see a result of heads.]

Problem 10. Let (X,B, µ) be a measure space. Show that the following are equivalent:

(i) µ is s-finite;
(ii) there exists a finite measure ν such that µ ≈ ν;
(iii) there exists a σ-finite measure ν such that µ ≪ ν.

Problem 11. Let µ1, µ2 be finite positive measures on a measurable space (X,B). Characterize
the pairs (µ1, µ2) for which (µ1 − µ2)

+ = µ1 and (µ1 − µ2)
− = µ2.

Problem 12. Let (X,B, µ) be a finite measure space, and let A,B ∈ B. Define ν(E) = µ(E ∩
A)− µ(E ∩B) for E ∈ B.
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(a) Show that ν is a signed measure.
(b) Determine the Hahn decomposition of ν.
(c) Show that ν ≪ µ.
(d) Compute the Radon–Nikodym derivative dν

dµ .

Problem 13. Let X be an LCH space, and let µ be a Radon measure on X. Show that there
exists a closed set C ⊆ X with the following two properties:

(i) µ(X \ C) = 0, and
(ii) if U ⊆ X is open and U ∩ C ̸= ∅, then µ(U) > 0.

[Note: The set C is called the (topological) support of the measure µ.]

Problem 14. Let (X,B, µ) be a σ-finite measure space. Suppose ν1, ν2 are positive measures on
(X,B, µ) with ν1(X) = ν2(X) = 1 and ν1, ν2 ≪ µ. Show

sup
E∈B

(ν1(E)− ν2(E)) =
1

2

∫
X

∣∣∣∣dν1dµ
− dν2

dµ

∣∣∣∣ dµ.

Problem 15. Let A,B ⊆ [0, 1) be Lebesgue-measurable sets. For each t ∈ [0, 1), let Bt = {b + t
mod 1 : b ∈ B}. Show that there exists t ∈ [0, 1) such that λ(A ∩Bt) ≥ λ(A)λ(B).

Problem 16. Let X be a compact metric space, and let T : X → X be a continuous function. We
say that a probability measure µ : Borel(X) → [0,∞] is T -invariant if µ(T−1E) = µ(E) for every
E ∈ Borel(X). Denote by M(X,T ) the space of T -invariant Borel probability measures on X.

(a) Show that M(X,T ) is a convex set.

Given a convex set C, a point x ∈ C is an extreme point if the only solution to x = ty + (1 − t)z
for t ∈ (0, 1) and y, z ∈ C is y = z = x.

(b) Let µ ∈ M(X,T ). Show that the following are equivalent:
(i) µ is an extreme point of M(X,T ).
(ii) if E ∈ B and µ

(
E△T−1E

)
= 0, then µ(E) ∈ {0, 1}.

[Hint for (ii) =⇒ (i): Suppose µ satisfies (ii), and write µ = tν1 + (1 − t)ν2 with ν1, ν2 ∈
M(X,T ) and t ∈ (0, 1). Let f = dν1

dµ and consider E = {f < 1}. Show that
∫
E\T−1E f dµ =∫

T−1E\E f dµ and deduce that f = 1 a.e.]

A measure satisfying (ii) is called ergodic. Let E(X,T ) denote the set of ergodic T -invariant Borel
probability measures on X.

(c) Suppose µ, ν ∈ E(X,T ) and µ ̸= ν. Show that µ ⊥ ν.


